Exploring the directionality of Escherichia coli formate hydrogenlyase: a membrane‐bound enzyme capable of fixing carbon dioxide to organic acid
نویسندگان
چکیده
During mixed-acid fermentation Escherichia coli produces formate, which is initially excreted out the cell. Accumulation of formate, and dropping extracellular pH, leads to biosynthesis of the formate hydrogenlyase (FHL) complex. FHL consists of membrane and soluble domains anchored within the inner membrane. The soluble domain comprises a [NiFe] hydrogenase and a formate dehydrogenase that link formate oxidation directly to proton reduction with the release of CO2 and H2 . Thus, the function of FHL is to oxidize excess formate at low pH. FHL subunits share identity with subunits of the respiratory Complex I. In particular, the FHL membrane domain contains subunits (HycC and HycD) that are homologs of NuoL/M/N and NuoH, respectively, which have been implicated in proton translocation. In this work, strain engineering and new assays demonstrate unequivocally the nonphysiological reverse activity of FHL in vivo and in vitro. Harnessing FHL to reduce CO2 to formate is biotechnologically important. Moreover, assays for both possible FHL reactions provide opportunities to explore the bioenergetics using biochemical and genetic approaches. Comprehensive mutagenesis of hycC did not identify any single amino acid residues essential for FHL operation. However, the HycD E199, E201, and E203 residues were found to be critically important for FHL function.
منابع مشابه
Preparation and properties of cell-free "formic hydrogenlyase" from escherichia coli.
The available evidence indicates that formic acid is the precursor of the molecular hydrogen produced as an end product of fermentations effected by Escherichia coli, Aerobacter aerogenes, and related organisms. Formate is rapidly decomposed by these bacteria with the formation of H2 and CO2 in a reaction catalyzed by the enzyme or enzyme-complex designated as "formic hydrogenlyase". One of the...
متن کاملEfficient Hydrogen-Dependent Carbon Dioxide Reduction by Escherichia coli
Hydrogen-dependent reduction of carbon dioxide to formic acid offers a promising route to greenhouse gas sequestration, carbon abatement technologies, hydrogen transport and storage, and the sustainable generation of renewable chemical feedstocks [1]. The most common approach to performing direct hydrogenation of CO2 to formate is to use chemical catalysts in homogeneous or heterogeneous reacti...
متن کاملFormate and its role in hydrogen production in Escherichia coli.
The production of dihydrogen by Escherichia coli and other members of the Enterobacteriaceae is one of the classic features of mixed-acid fermentation. Synthesis of the multicomponent, membrane-associated FHL (formate hydrogenlyase) enzyme complex, which disproportionates formate into CO(2) and H(2), has an absolute requirement for formate. Formate, therefore, represents a signature molecule in...
متن کاملKinetics for Formate Dehydrogenase of Escherichia coli
Kinetic parameters of the selenium-containing, formate dehydrogenase component of the Escherichia coli formate-hydrogenlyase complex have been determined with purified enzyme. A ping-pong Bi Bi kinetic mechanism was observed. The K,,, for formate is 26 mM, and the K,,, for the electron-accepting dye, benzyl viologen, is in the range 1-5 mM. The maximal turnover rate for the formate-dependent ca...
متن کاملIncreased Hydrogen Production by Genetic Engineering of Escherichia coli
Escherichia coli is capable of producing hydrogen under anaerobic growth conditions. Formate is converted to hydrogen in the fermenting cell by the formate hydrogenlyase enzyme system. The specific hydrogen yield from glucose was improved by the modification of transcriptional regulators and metabolic enzymes involved in the dissimilation of pyruvate and formate. The engineered E. coli strains ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 5 شماره
صفحات -
تاریخ انتشار 2016